Exact risk improvement of bandwidth selectors for kernel density estimation with directional data
نویسندگان
چکیده
منابع مشابه
Evaluation of Root-n Bandwidth Selectors for Kernel Density Estimation
The kernel density estimator is used commonly for estimating animal utilization distributions from location data. This technique requires estimation of a bandwidth, for which ecologists often use least-squares cross-validation (LSCV). However, LSCV has large variance and a tendency to under-smooth data, and it fails to generate a bandwidth estimate in some situations. We compared performance of...
متن کاملLocal bandwidth selectors for deconvolution kernel density estimation
We consider kernel density estimation when the observations are contaminated by measurement errors. It is well known that the success of kernel estimators depends heavily on the choice of a smoothing parameter called the bandwidth. A number of data-driven bandwidth selectors exist in the literature, but they are all global. Such techniques are appropriate when the density is relatively simple, ...
متن کاملFourier Series Based Bandwidth Selectors for Kernel Density Estimation
A class of Fourier series based plug-in bandwidth selectors for kernel density estimation is considered in this paper. The proposed data-dependent bandwidths are simple to obtain, easy to interpret and consistent for a wide class of compact supported distributions. Some of them present good finite sample comparative performances against the classical two-stage direct plug-in method or the least...
متن کاملKernel density estimation for directional-linear data
A nonparametric kernel density estimator for directional–linear data is introduced. The proposal is based on a product kernel accounting for the different nature of both (directional and linear) components of the random vector. Expressions for bias, variance and mean integrated square error (MISE) are derived, jointly with an asymptotic normality result for the proposed estimator. For some part...
متن کاملFull bandwidth matrix selectors for gradient kernel density estimate
The most important factor in multivariate kernel density estimation is a choice of a bandwidth matrix. This choice is particularly important, because of its role in controlling both the amount and the direction of multivariate smoothing. Considerable attention has been paid to constrained parameterization of the bandwidth matrix such as a diagonal matrix or a pre-transformation of the data. A g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2013
ISSN: 1935-7524
DOI: 10.1214/13-ejs821